The Concept of Measurability
The class of measurable functions plays a fundamental role in integration theory. It has some basic properties in common with another most important class of functions, namely, the continuous ones. It is helpful to keep these similarities in mind. Our presentation is therefore organized in such a way that the analogies between the concepts topological space, open set, and continuous function, on the one hand, and measurable space, measurable set, and measurable function, on the other, are strongly emphasized. It seems that the relations between these concepts emerge most clearly when the setting is quite abstract, and this (rather than a desire for mere generality) motivates our approach to the subject.
1.2 Definition
拓扑名字的解释
“拓扑”这个名称源于希腊语 (tópos),意思是地方或位置,以及 (-logía),意思是研究。
因此,拓扑学的字面意思就是“对地方/位置的研究”。
在数学上,拓扑学(或称为“橡皮泥几何学”)是研究空间在连续变形(如拉伸、扭曲,但不允许撕裂或粘合)下保持不变的性质。
您在页面上看到的抽象拓扑定义(即对开集集合 的三个性质要求),是现代拓扑学的核心。它将我们从熟悉的欧几里得空间(如直线、平面)中关于“近”(靠近)和“连续”的直觉抽象出来,形成了一套可以在任何抽象集合 上定义的规则。
它被称为“拓扑”正是因为它提供了一种最一般的方法来描述一个集合 上的**“结构”,允许我们谈论集合 中哪些子集是“开放的”,从而在不依赖距离(metric)的情况下讨论连续性**、收敛性和连通性等空间属性。
- 开集(Open sets)是定义拓扑的基本元素,它们在某种意义上代表了集合中的“邻域”概念。
- 通过开集的这三条公理(空集和全集、有限交集、任意并集),数学家们能够在最广泛的背景下研究这些与“位置”和“邻近”相关的概念。
(a) A collection of subsets of a set is said to be a topology in if has the following three properties:
- and .
- If for , then .
- If is an arbitrary collection of members of (finite, countable, or uncountable), then .
(b) If is a topology in , then is called a topological space, and the members of are called the open sets in .
(c) If and are topological spaces and if is a mapping of into , then is said to be continuous provided that is an open set in for every open set in .
Examples
我们以最常见、最直观的两个空间为例:
1. 欧几里得空间 上的标准拓扑
这是我们在实数线上最熟悉的拓扑。开集的定义是:任何一个开区间 ,以及任意数量(有限、可数或不可数)的开区间的并集。
| 性质 | 抽象拓扑要求 | 欧几里得空间 中的例子 |
|---|---|---|
| 有限交集 必须是开集 | 有限个开集的交集 | 两个开集的交集: 。 仍然是一个开区间,是开集。 |
| 任意并集 必须是开集 | 任意个开集的并集 | 可数个并集: 。 是全集,是开集。 |
| 可数交集 不要求是开集 | 不要求可数交集 | 可数个交集(反例): 。 单点集 不是开集,而是一个闭集。 |
2. 离散拓扑 (Discrete Topology)
在一个集合 上,如果所有子集都是开集,那么这个拓扑被称为离散拓扑。
在这种情况下,拓扑 就是 的幂集 。
| 性质 | 抽象拓扑要求 | 离散拓扑 中的体现 |
|---|---|---|
| 有限交集 | 必须是开集 | 任何两个子集 的交集 必然是 的一个子集,因此它总是开集。 |
| 任意并集 | 必须是开集 | 任意数量的子集 的并集必然是 的一个子集,因此它总是开集。 |
| 单点集 | 任意并集 | 在离散拓扑中,任何单点集 都是开集,因为它是 的一个子集。 |
3. 平凡拓扑 (Trivial Topology)
在一个集合 上,如果只有空集 和全集 被定义为开集,那么这个拓扑被称为平凡拓扑。
在这种情况下,拓扑 。
| 性质 | 抽象拓扑要求 | 平凡拓扑 中的体现 |
|---|---|---|
| 有限交集 | 必须是开集 | , , 。结果都在 中。 |
| 任意并集 | 必须是开集 | , , 。结果都在 中。 |
| 结论 | - | 这是最“粗糙”的拓扑,它限制了你对集合 进行“邻近”研究的能力。 |
1.3 Definition
(a) A collection of subsets of a set is said to be a -algebra in if has the following properties:
- .
- If , then , where is the complement of relative to .
- If and if for , then .
(b) If is a -algebra in , then is called a measurable space, and the members of are called the measurable sets in .
(c) If is a measurable space, is a topological space, and is a mapping of into , then is said to be measurable provided that is a measurable set in for every open set in .
It would perhaps be more satisfactory to apply the term “measurable space” to the ordered pair , rather than to . After all, is a set, and has not been changed in any way by the fact that we now also have a -algebra of its subsets in mind. Similarly, a topological space is an ordered pair . But if this sort of thing were systematically done in all mathematics, the terminology would become awfully cumbersome. We shall discuss this again at somewhat greater length in Sec. 1.21.
Difference between 1.2 and 1.3
-代数(-algebra) 和 拓扑(Topology) 的区别。这是抽象数学中两个非常重要的概念,它们各自为不同的数学分支(测度论/积分论 和 拓扑学)提供基础。
最大的区别在于它们对 并集 和 交集 的要求,以及它们引入的核心概念不同:
| 特征 | 拓扑(Topology ) | -代数(-algebra ) |
|---|---|---|
| 主要用途 | 定义开集,研究连续性、收敛性、连通性。 | 定义可测集,研究测度(Measure)和积分(Integration)。 |
| 核心概念 | 开集(Open Set) | 可测集(Measurable Set) |
| 任意并集 | 必须封闭(任意个开集的并集仍是开集)。 | 不要求封闭。 |
| 可数并集 | 必须封闭(因为“任意”包含“可数”)。 | 必须封闭(可数个可测集的并集仍是可测集)。 |
| 有限交集 | 必须封闭(有限个开集的交集仍是开集)。 | 必须封闭(因为 -代数对可数并集和补集封闭,故对有限交集也封闭)。 |
| 可数交集 | 不要求封闭(开集的可数交集可能不是开集,例如 )。 | 必须封闭(因为 -代数对补集和可数并集封闭,故对可数交集也封闭,例如 )。 |
| 补集 | 不要求封闭(开集的补集是闭集,不一定是开集)。 | 必须封闭(可测集的补集仍是可测集)。 |
1. 拓扑(Topology ) (1.2 Definition)
- 并集强势: 对任意并集封闭(性质 3)。
- 交集弱势: 只对有限交集封闭(性质 2)。
- 缺少补集: 不要求对补集封闭。
2. -代数(-algebra ) (1.3 Definition)
- 并集限制: 只对可数并集封闭(性质 3)。
- 补集要求: 必须对补集封闭(性质 2)。
- 可数交集: 正是由于对补集和可数并集封闭,可以推导出它也对可数交集封闭(见 1.6 Comments (c))。
总而言之:
- 拓扑关心的是 “近” 和 “连续” 的抽象概念,并集是其核心操作。
- -代数关心的是 “可测” 和 “测度” 的抽象概念,它对可数并集和补集的要求,使其能够承载一个定义良好的可加性的测度。
在测度论中,-代数通常包含一个空间中的所有开集(通过 Borel -代数 的概念,如 1.11 Borel Sets 中所述),从而将拓扑结构纳入积分理论的框架中。
1.4 Comments on Definition 1.2 The most familiar topological spaces are the metric spaces. We shall assume some familiarity with metric spaces but shall give the basic definitions, for the sake of completeness.
A metric space is a set in which a distance function (or metric) is defined, with the following properties:
(a) for all and . (b) if and only if . (c) for all and . (d) for all , and .
Property (d) is called the triangle inequality.
If and , the open ball with center at and radius is the set .
If is a metric space and if is the collection of all sets which are arbitrary unions of open balls, then is a topology in . This is not hard to verify; the intersection property depends on the fact that if , where and are open balls, then is the center of an open ball . We leave this as an exercise.
度量拓扑
定义:设 是度量空间 中所有开集构成的集合族(即所有开球的任意并集),则 构成一个拓扑空间。这个结论可以通过验证 满足拓扑的三个性质来证明:
- 中任意有限个开集的交集仍在 中
- 中任意(可以是无限个)开集的并集仍在 中
这是从度量空间到拓扑空间的基本桥梁。
For instance, in the real line a set is open if and only if it is a union of open segments . In the plane , the open sets are those which are unions of open circular discs.
Another topological space, which we shall encounter frequently, is the extended real line ; its topology is defined by declaring the following sets to be open: , , , and any union of segments of this type.
The definition of continuity given in Sec. 1.2(c) is a global one. Frequently it is desirable to define continuity locally: A mapping of into is said to be continuous at the point if to every neighborhood of there corresponds a neighborhood of such that .
(A neighborhood of a point is, by definition, an open set which contains .)
When and are metric spaces, this local definition is of course the same as the usual epsilon-delta definition, and is equivalent to the requirement that in whenever in .
The following easy proposition relates the local and global definitions of continuity in the expected manner:
1.5 Proposition Let and be topological spaces. A mapping of into is continuous if and only if is continuous at every point of .
PROOF If is continuous and , then is a neighborhood of , for every neighborhood of . Since , it follows that is continuous at .
If is continuous at every point of and if is open in , every point has a neighborhood such that . Therefore . It follows that is the union of the open sets , so is itself open. Thus is continuous. ////
1.6 Comments on Definition 1.3 Let be a -algebra in a set . Referring to Properties (i) to (iii) of Definition 1.3(a), we immediately derive the following facts.
(a) Since , (i) and (ii) imply that . (b) Taking in (iii), we see that if for . (c) Since
is closed under the formation of countable (and also finite) intersections. (d) Since , we have if and .
The prefix refers to the fact that (iii) is required to hold for all countable unions of members of . If (iii) is required for finite unions only, then is called an algebra of sets.
1.7 Theorem Let and be topological spaces, and let be continuous.
(a) If is a topological space, if is continuous, and if , then is continuous. (b) If is a measurable space, if is measurable, and if , then is measurable.
Stated informally, continuous functions of continuous functions are continuous; continuous functions of measurable functions are measurable.
PROOF If is open in , then is open in , and
If is continuous, it follows that is open, proving (a).
If is measurable, it follows that is measurable, proving (b). ////
1.8 Theorem Let and be real measurable functions on a measurable space , let be a continuous mapping of the plane into a topological space , and define
for . Then is measurable.
PROOF Put . Then maps into the plane. Since , Theorem 1.7 shows that it is enough to prove the measurability of .
If is any open rectangle in the plane, with sides parallel to the axes, then is the cartesian product of two segments and , and
which is measurable, by our assumption on and . Every open set in the plane is a countable union of such rectangles , and since
is measurable. ////
1.9 Let be a measurable space. The following propositions are corollaries of Theorems 1.7 and 1.8:
(a) If , where and are real measurable functions on , then is a complex measurable function on .
This follows from Theorem 1.8, with .
(b) If is a complex measurable function on , then , , and are real measurable functions on .
This follows from Theorem 1.7, with , , and .
(c) If and are complex measurable functions on , then so are and .
For real and this follows from Theorem 1.8, with
and . The complex case then follows from (a) and (b).
(d) If is a measurable set in and if
then is a measurable function.
This is obvious. We call the characteristic function of the set . The letter will be reserved for characteristic functions throughout this book.
(e) If is a complex measurable function on , there is a complex measurable function on such that and .
PROOF Let , let be the complex plane with the origin removed, define for , and put
If , ; if , . Since is continuous on and since is measurable (why?), the measurability of follows from (c), (d), and Theorem 1.7. ////
We now show that -algebras exist in great profusion.
1.10 Theorem If is any collection of subsets of , there exists a smallest -algebra in such that .
This is sometimes called the -algebra generated by .
PROOF Let be the family of all -algebras in which contain . Since the collection of all subsets of is such a -algebra, is not empty. Let be the intersection of all . It is clear that and that lies in every -algebra in which contains . To complete the proof, we have to show that is itself a -algebra.
If for , and if , then , so , since is a -algebra. Since for every , we conclude that . The other two defining properties of a -algebra are verified in the same manner. ////
1.11 Borel Sets Let be a topological space. By Theorem 1.10, there exists a smallest -algebra in such that every open set in belongs to . The members of are called the Borel sets of .
In particular, closed sets are Borel sets (being, by definition, the complements of open sets), and so are all countable unions of closed sets and all countable intersections of open sets. These last two are called ’s and ’s, respectively, and play a considerable role. The notation is due to Hausdorff. The letters and were used for closed and open sets, respectively, and refers to union (Summe), to intersection (Durchschnitt). For example, every half-open interval is a and an in .
Since is a -algebra, we may now regard as a measurable space, with the Borel sets playing the role of the measurable sets; more concisely, we consider the measurable space . If is a continuous mapping of , where is any topological space, then it is evident from the definitions that for every open set in . In other words, every continuous mapping of is Borel measurable.
Borel measurable mappings are often called Borel mappings, or Borel functions.
1.12 Theorem Suppose is a -algebra in , and is a topological space. Let map into .
(a) If is the collection of all sets such that , then is a -algebra in .
(b) If is measurable and is a Borel set in , then .
(c) If and for every real , then is measurable.
(d) If is measurable, if is a topological space, if is a Borel mapping, and if , then is measurable.
Part (c) is a frequently used criterion for the measurability of real-valued functions. (See also Exercise 3.) Note that (d) generalizes Theorem 1.7(b).
PROOF (a) follows from the relations
and .
To prove (b), let be as in (a); the measurability of implies that contains all open sets in , and since is a -algebra, contains all Borel sets in .
To prove (c), let be the collection of all such that . Choose a real number , and choose so that as . Since for each , since
and since (a) shows that is a -algebra, we see that . The same is then true of
Since every open set in is a countable union of segments of the above types, contains every open set. Thus is measurable.
To prove (d), let be open. Then is a Borel set of , and since
(b) shows that .
////
关于d的说明
在定理 1.12 (d) 中,函数 要是可测的,要求 是可测的(measurable),而 必须是 Borel 映射(Borel mapping),即 是Borel 可测的。
为什么要限制 为 Borel 映射,而不是一般的可测映射?
这是因为 的定义域 是一个拓扑空间,而 的值域 在 上是可测空间的像。具体来说:
可测函数的定义 (Definition 1.3(c)) 依赖于 的开集: 是可测的,意味着对于 中每个开集 ,其原像 必须是 中的可测集(即 )。
复合函数的可测性依赖于 的原像: 要证明 可测,我们需要证明对于 中每个开集 ,其原像 必须是 中的可测集。 根据复合函数的性质:
对 的要求:
- 因为 只能保证将 中开集的原像拉回到 中的可测集。
- 为了确保 是 中的可测集,我们必须保证 是 中的一个Borel 集。
- Borel 映射的定义 (Section 1.11, 1.12(b)): 是 Borel 映射(或 Borel 可测),当且仅当对于 中每个开集 ,其原像 必须是 中的 Borel 集。
结论:
- 如果 只是一个一般可测映射(即 只是 中的一般可测集),那么 不一定在 上是可测的。因为 的可测性只对 中的开集(及其生成的 Borel 集)的原像有保证。
- Borel 映射确保了 (对于 中的开集 )是 中由开集生成的 -代数中的一个集合(即 Borel 集)。根据定理 1.12(b),可测函数 能够将 中的 Borel 集的原像拉回到 中的可测集,从而证明 是可测的。
因此,将 限制为 Borel 映射是确保 是 的 Borel 集所必需的,这样才能利用 的可测性(特别是定理 1.12(b))来完成证明。
非常经典的反例来展示,如果不要求 是 Borel 映射(或者说,如果 仅仅是 Lebesgue 可测,而 也是 Lebesgue 可测,但不满足更强的条件),复合函数 可能就不是可测的。
这个反例通常涉及到 上的 Lebesgue 可测集 和 Borel 可测集 之间的区别。
经典反例构造 (使用不可测集)
在 上,我们考虑 Lebesgue 测度 ,对应的 -代数是 (Lebesgue 可测集)。我们知道 Borel -代数 是严格包含于 的 ()。
我们选取一个非 Lebesgue 可测集 (例如著名的 Vitali 集)。
现在我们来构造函数 和 :
构造 (可测函数): 我们希望 是一个(在 上)可测的函数,并且它的值域能够帮助我们“隔离”出 。
选择一个连续的、严格递增的函数 ,它的逆函数 也是连续的(因此是 Borel 映射,进而也是 Lebesgue 可测的)。
- 例: 可以利用 Cantor 函数 构造 。 是连续严格递增的,将 映射到 。我们可以将 推广到整个 上,使其逆函数 仍然是连续的。
设 。由于 是连续函数(因此是 Borel 映射),我们有:
我们知道 几乎处处为零(因为它在 内,且 的情况会导致 可测,因此 必须是 或 且 )。关键的一点是: 的构造保证了存在一个 Lebesgue 可测集 ,其原像 是非 Lebesgue 可测集 。
我们定义 。
- 的性质: 是连续函数,因此 是 Borel 映射 (即 ),进而也是 Lebesgue 可测函数(因为 )。
构造 (可测函数): 我们定义 为集 的示性函数 (characteristic function):
- 的性质: 是一个 Lebesgue 可测集 ( 中的元素)。示性函数 是可测的,当且仅当它的定义集 是可测的。所以 是 Lebesgue 可测函数 (在 上)。
计算复合函数 :
我们检查 的可测性。对于开集 ,我们有:
因为 是一个非 Lebesgue 可测集,所以复合函数 不是 Lebesgue 可测的。
总结
在这个反例中:
- 是 Borel 可测 (甚至连续) 的,因此是 Lebesgue 可测的。
- 是 Lebesgue 可测的,因为 是 Lebesgue 可测集。
- 但是 不是 Borel 映射,因为 是 中的一个集合,但不是 中的 Borel 集。
这完美地说明了,Rudin (定理 1.12(d)) 中要求 必须是 Borel 映射 的重要性。如果 只是一个一般可测映射(指 可测),它可能将 Borel 集的原像拉回到一个非 Borel 可测集 。 当 是 Borel 映射时,它能保证 仍然可测,但在这个反例中,我们选择了一个能将 的原像 拉回到非可测集的 的逆,从而导致了复合函数不可测。
总之,复合函数的可测性需要 具有“足够好”的性质来保证 是 可以处理的集合(即 中的 Borel 集)。
- 如果 是 Borel 映射,则 是 中的 Borel 集,而 作为可测函数可以将 Borel 集的原像 拉回 中的可测集。
- 如果 只是一般可测,那么 可能是 中的非 Borel 可测集 ,而 并不保证 仍然是可测的。
1.13 Definition Let be a sequence in , and put
and
We call the upper limit of , and write
The following properties are easily verified: First, , so that as ; secondly, there is a subsequence of such that as , and is the largest number with this property.
The lower limit is defined analogously: simply interchange sup and inf in (1) and (2). Note that
If converges, then evidently
Suppose is a sequence of extended-real functions on a set . Then and are the functions defined on by
If
the limit being assumed to exist at every , then we call the pointwise limit of the sequence .
1.14 Theorem If is measurable, for , and
then and are measurable.
PROOF . Hence Theorem 1.12(c) implies that is measurable. The same result holds of course with inf in place of sup, and since
it follows that is measurable. ////
Corollaries
(a) The limit of every pointwise convergent sequence of complex measurable functions is measurable.
(b) If and are measurable (with range in ), then so are and . In particular, this is true of the functions
1.15 Proposition The above functions and are called the positive and negative parts of . We have and , a standard representation of as a difference of two nonnegative functions, with a certain minimality property: If , , and , then and .
PROOF and clearly implies . ////