The Concept of Measurability

The class of measurable functions plays a fundamental role in integration theory. It has some basic properties in common with another most important class of functions, namely, the continuous ones. It is helpful to keep these similarities in mind. Our presentation is therefore organized in such a way that the analogies between the concepts topological space, open set, and continuous function, on the one hand, and measurable space, measurable set, and measurable function, on the other, are strongly emphasized. It seems that the relations between these concepts emerge most clearly when the setting is quite abstract, and this (rather than a desire for mere generality) motivates our approach to the subject.

1.2 Definition

拓扑名字的解释

“拓扑”这个名称源于希腊语 τoˊπoς\tau \acute{o} \pi o \varsigmatópos),意思是地方位置,以及 λoγiˊα-\lambda o \gamma \acute{i} \alpha-logía),意思是研究

因此,拓扑学的字面意思就是“对地方/位置的研究”

在数学上,拓扑学(或称为“橡皮泥几何学”)是研究空间在连续变形(如拉伸、扭曲,但不允许撕裂或粘合)下保持不变的性质。

您在页面上看到的抽象拓扑定义(即对开集集合 τ\tau 的三个性质要求),是现代拓扑学的核心。它将我们从熟悉的欧几里得空间(如直线、平面)中关于“近”(靠近)和“连续”的直觉抽象出来,形成了一套可以在任何抽象集合 XX 上定义的规则。

它被称为“拓扑”正是因为它提供了一种最一般的方法来描述一个集合 XX 上的**“结构”,允许我们谈论集合 XX 中哪些子集是“开放的”,从而在不依赖距离(metric)的情况下讨论连续性**、收敛性连通性空间属性

  • 开集(Open sets)是定义拓扑的基本元素,它们在某种意义上代表了集合中的“邻域”概念。
  • 通过开集的这三条公理(空集和全集、有限交集、任意并集),数学家们能够在最广泛的背景下研究这些与“位置”和“邻近”相关的概念。

(a) A collection τ\tau of subsets of a set XX is said to be a topology in XX if τ\tau has the following three properties:

  1. τ\emptyset \in \tau and XτX \in \tau.
  2. If ViτV_i \in \tau for i=1,,ni = 1, \dots, n, then V1V2VnτV_1 \cap V_2 \cap \dots \cap V_n \in \tau.
  3. If {Vα}\{V_\alpha\} is an arbitrary collection of members of τ\tau (finite, countable, or uncountable), then αVατ\bigcup_\alpha V_\alpha \in \tau.

(b) If τ\tau is a topology in XX, then XX is called a topological space, and the members of τ\tau are called the open sets in XX.

(c) If XX and YY are topological spaces and if ff is a mapping of XX into YY, then ff is said to be continuous provided that f1(V)f^{-1}(V) is an open set in XX for every open set VV in YY.

Examples

我们以最常见、最直观的两个空间为例:

1. 欧几里得空间 R\mathbb{R} 上的标准拓扑

这是我们在实数线上最熟悉的拓扑。开集的定义是:任何一个开区间 (a,b)(a, b),以及任意数量(有限、可数或不可数)的开区间的并集。

性质抽象拓扑要求欧几里得空间 R\mathbb{R} 中的例子
有限交集 必须是开集有限个开集的交集 τ\in \tau两个开集的交集: (1,5)(3,7)=(3,5)(1, 5) \cap (3, 7) = (3, 5)(3,5)(3, 5) 仍然是一个开区间,是开集。
任意并集 必须是开集任意个开集的并集 τ\in \tau可数个并集: n=1(n,n)=(,)=R\bigcup_{n=1}^\infty (-n, n) = (-\infty, \infty) = \mathbb{R}R\mathbb{R} 是全集,是开集。
可数交集 要求是开集要求可数交集 τ\in \tau可数个交集(反例): n=1(1n,1n)={0}\bigcap_{n=1}^\infty \left(-\frac{1}{n}, \frac{1}{n}\right) = \{0\}。 单点集 {0}\{0\} 不是开集,而是一个闭集。

2. 离散拓扑 (Discrete Topology)

在一个集合 XX 上,如果所有子集都是开集,那么这个拓扑被称为离散拓扑

在这种情况下,拓扑 τ\tau 就是 XX幂集 P(X)\mathcal{P}(X)

性质抽象拓扑要求离散拓扑 XX 中的体现
有限交集必须是开集任何两个子集 A,BXA, B \subset X 的交集 ABA \cap B 必然是 XX 的一个子集,因此它总是开集。
任意并集必须是开集任意数量的子集 Aα\bigcup A_\alpha 的并集必然是 XX 的一个子集,因此它总是开集。
单点集任意并集在离散拓扑中,任何单点集 {x}\{x\} 都是开集,因为它是 XX 的一个子集。

3. 平凡拓扑 (Trivial Topology)

在一个集合 XX 上,如果只有空集 \emptyset全集 XX 被定义为开集,那么这个拓扑被称为平凡拓扑

在这种情况下,拓扑 τ={,X}\tau = \{\emptyset, X\}

性质抽象拓扑要求平凡拓扑 XX 中的体现
有限交集必须是开集X=\emptyset \cap X = \emptyset, =\emptyset \cap \emptyset = \emptyset, XX=XX \cap X = X。结果都在 τ\tau 中。
任意并集必须是开集X=X\emptyset \cup X = X, =\emptyset \cup \emptyset = \emptyset, XX=XX \cup X = X。结果都在 τ\tau 中。
结论-这是最“粗糙”的拓扑,它限制了你对集合 XX 进行“邻近”研究的能力。

1.3 Definition

(a) A collection M\mathcal{M} of subsets of a set XX is said to be a σ\sigma-algebra in XX if M\mathcal{M} has the following properties:

  1. XMX \in \mathcal{M}.
  2. If AMA \in \mathcal{M}, then AcMA^c \in \mathcal{M}, where AcA^c is the complement of AA relative to XX.
  3. If A=n=1AnA = \bigcup_{n=1}^\infty A_n and if AnMA_n \in \mathcal{M} for n=1,2,3,n = 1, 2, 3, \dots, then AMA \in \mathcal{M}.

(b) If M\mathcal{M} is a σ\sigma-algebra in XX, then XX is called a measurable space, and the members of M\mathcal{M} are called the measurable sets in XX.

(c) If XX is a measurable space, YY is a topological space, and ff is a mapping of XX into YY, then ff is said to be measurable provided that f1(V)f^{-1}(V) is a measurable set in XX for every open set VV in YY.

It would perhaps be more satisfactory to apply the term “measurable space” to the ordered pair (X,M)(X, \mathcal{M}), rather than to XX. After all, XX is a set, and XX has not been changed in any way by the fact that we now also have a σ\sigma-algebra of its subsets in mind. Similarly, a topological space is an ordered pair (X,τ)(X, \tau). But if this sort of thing were systematically done in all mathematics, the terminology would become awfully cumbersome. We shall discuss this again at somewhat greater length in Sec. 1.21.

Difference between 1.2 and 1.3

σ\sigma-代数(σ\sigma-algebra)拓扑(Topology) 的区别。这是抽象数学中两个非常重要的概念,它们各自为不同的数学分支(测度论/积分论拓扑学)提供基础。

最大的区别在于它们对 并集交集 的要求,以及它们引入的核心概念不同:

特征拓扑(Topology τ\tauσ\sigma-代数(σ\sigma-algebra MM
主要用途定义开集,研究连续性收敛性连通性定义可测集,研究测度(Measure)积分(Integration)
核心概念开集(Open Set)可测集(Measurable Set)
任意并集必须封闭(任意个开集的并集仍是开集)。要求封闭。
可数并集必须封闭(因为“任意”包含“可数”)。必须封闭(可数个可测集的并集仍是可测集)。
有限交集必须封闭(有限个开集的交集仍是开集)。必须封闭(因为 σ\sigma-代数对可数并集和补集封闭,故对有限交集也封闭)。
可数交集要求封闭(开集的可数交集可能不是开集,例如 n=1(1/n,1/n)={0}\bigcap_{n=1}^{\infty} (-1/n, 1/n) = \{0\})。必须封闭(因为 σ\sigma-代数对补集可数并集封闭,故对可数交集也封闭,例如 An=(Anc)c\bigcap A_n = (\bigcup A_n^c)^c)。
补集要求封闭(开集的补集是闭集,不一定是开集)。必须封闭(可测集的补集仍是可测集)。

1. 拓扑(Topology τ\tau (1.2 Definition)

  • 并集强势:任意并集封闭(性质 3)。
  • 交集弱势: 只对有限交集封闭(性质 2)。
  • 缺少补集: 不要求对补集封闭。

2. σ\sigma-代数(σ\sigma-algebra MM (1.3 Definition)

  • 并集限制: 只对可数并集封闭(性质 3)。
  • 补集要求: 必须对补集封闭(性质 2)。
  • 可数交集: 正是由于对补集和可数并集封闭,可以推导出它也对可数交集封闭(见 1.6 Comments (c))。

总而言之:

  • 拓扑关心的是 “近”“连续” 的抽象概念,并集是其核心操作。
  • σ\sigma-代数关心的是 “可测”“测度” 的抽象概念,它对可数并集和补集的要求,使其能够承载一个定义良好的可加性测度

在测度论中,σ\sigma-代数通常包含一个空间中的所有开集(通过 Borel σ\sigma-代数 的概念,如 1.11 Borel Sets 中所述),从而将拓扑结构纳入积分理论的框架中。

1.4 Comments on Definition 1.2 The most familiar topological spaces are the metric spaces. We shall assume some familiarity with metric spaces but shall give the basic definitions, for the sake of completeness.

A metric space is a set XX in which a distance function (or metric) ρ\rho is defined, with the following properties:

(a) 0ρ(x,y)<0 \le \rho(x, y) < \infty for all xx and yXy \in X. (b) ρ(x,y)=0\rho(x, y) = 0 if and only if x=yx = y. (c) ρ(x,y)=ρ(y,x)\rho(x, y) = \rho(y, x) for all xx and yXy \in X. (d) ρ(x,y)ρ(x,z)+ρ(z,y)\rho(x, y) \le \rho(x, z) + \rho(z, y) for all x,yx, y, and zXz \in X.

Property (d) is called the triangle inequality.

If xXx \in X and r0r \ge 0, the open ball with center at xx and radius rr is the set {yX:ρ(x,y)<r}\{y \in X : \rho(x, y) < r\}.

If XX is a metric space and if τ\tau is the collection of all sets EXE \subset X which are arbitrary unions of open balls, then τ\tau is a topology in XX. This is not hard to verify; the intersection property depends on the fact that if xB1B2x \in B_1 \cap B_2, where B1B_1 and B2B_2 are open balls, then xx is the center of an open ball BB1B2B \subset B_1 \cap B_2. We leave this as an exercise.

度量\rightarrow拓扑

定义:设 τ\tau 是度量空间 XX 中所有开集构成的集合族(即所有开球的任意并集),则 (X,τ)(X, \tau) 构成一个拓扑空间。这个结论可以通过验证 τ\tau 满足拓扑的三个性质来证明:

  1. ,Xτ\emptyset, X \in \tau
  2. τ\tau 中任意有限个开集的交集仍在 τ\tau
  3. τ\tau 中任意(可以是无限个)开集的并集仍在 τ\tau

这是从度量空间到拓扑空间的基本桥梁。

For instance, in the real line R1\mathbb{R}^1 a set is open if and only if it is a union of open segments (a,b)(a, b). In the plane R2\mathbb{R}^2, the open sets are those which are unions of open circular discs.

Another topological space, which we shall encounter frequently, is the extended real line [,][-\infty, \infty]; its topology is defined by declaring the following sets to be open: (a,b)(a, b), [,a)[-\infty, a), (a,](a, \infty], and any union of segments of this type.

The definition of continuity given in Sec. 1.2(c) is a global one. Frequently it is desirable to define continuity locally: A mapping ff of XX into YY is said to be continuous at the point x0Xx_0 \in X if to every neighborhood VV of f(x0)f(x_0) there corresponds a neighborhood WW of x0x_0 such that f(W)Vf(W) \subset V.

(A neighborhood of a point xx is, by definition, an open set which contains xx.)

When XX and YY are metric spaces, this local definition is of course the same as the usual epsilon-delta definition, and is equivalent to the requirement that limf(xn)=f(x0)\lim f(x_n) = f(x_0) in YY whenever limxn=x0\lim x_n = x_0 in XX.

The following easy proposition relates the local and global definitions of continuity in the expected manner:

1.5 Proposition Let XX and YY be topological spaces. A mapping ff of XX into YY is continuous if and only if ff is continuous at every point of XX.

PROOF If ff is continuous and x0Xx_0 \in X, then f1(V)f^{-1}(V) is a neighborhood of x0x_0, for every neighborhood VV of f(x0)f(x_0). Since f(f1(V))Vf(f^{-1}(V)) \subset V, it follows that ff is continuous at x0x_0.

If ff is continuous at every point of XX and if VV is open in YY, every point xf1(V)x \in f^{-1}(V) has a neighborhood WxW_x such that f(Wx)Vf(W_x) \subset V. Therefore Wxf1(V)W_x \subset f^{-1}(V). It follows that f1(V)f^{-1}(V) is the union of the open sets WxW_x, so f1(V)f^{-1}(V) is itself open. Thus ff is continuous. ////

1.6 Comments on Definition 1.3 Let M\mathcal{M} be a σ\sigma-algebra in a set XX. Referring to Properties (i) to (iii) of Definition 1.3(a), we immediately derive the following facts.

(a) Since =Xc\emptyset = X^c, (i) and (ii) imply that M\emptyset \in \mathcal{M}. (b) Taking An+1=An+2==A_{n+1} = A_{n+2} = \dots = \emptyset in (iii), we see that A1A2AnMA_1 \cup A_2 \cup \dots \cup A_n \in \mathcal{M} if AiMA_i \in \mathcal{M} for i=1,,ni = 1, \dots, n. (c) Since

n=1An=(n=1Anc)c,\bigcap_{n=1}^{\infty} A_n = \left( \bigcup_{n=1}^{\infty} A_n^c \right)^c,

M\mathcal{M} is closed under the formation of countable (and also finite) intersections. (d) Since AB=BcAA - B = B^c \cap A, we have ABMA - B \in \mathcal{M} if AMA \in \mathcal{M} and BMB \in \mathcal{M}.

The prefix σ\sigma refers to the fact that (iii) is required to hold for all countable unions of members of M\mathcal{M}. If (iii) is required for finite unions only, then M\mathcal{M} is called an algebra of sets.

1.6 中给出的结论其实就是可数包含了有限。这里单独给出的原因大概是为了公理的最小化和严谨性。

1.7 Theorem Let YY and ZZ be topological spaces, and let g:YZg: Y \to Z be continuous.

连续函数不改变可测性和连续性。

(a) If XX is a topological space, if f:XYf: X \to Y is continuous, and if h=gfh = g \circ f, then h:XZh: X \to Z is continuous. (b) If XX is a measurable space, if f:XYf: X \to Y is measurable, and if h=gfh = g \circ f, then h:XZh: X \to Z is measurable.

Stated informally, continuous functions of continuous functions are continuous; continuous functions of measurable functions are measurable.

PROOF If VV is open in ZZ, then g1(V)g^{-1}(V) is open in YY, and

h1(V)=f1(g1(V)).h^{-1}(V) = f^{-1}(g^{-1}(V)).

If ff is continuous, it follows that h1(V)h^{-1}(V) is open, proving (a).

If ff is measurable, it follows that h1(V)h^{-1}(V) is measurable, proving (b). ////

1.8 Theorem Let uu and vv be real measurable functions on a measurable space XX, let Φ\Phi be a continuous mapping of the plane into a topological space YY, and define

h(x)=Φ(u(x),v(x))h(x) = \Phi(u(x), v(x))

for xXx \in X. Then h:XYh: X \to Y is measurable.

PROOF Put f(x)=(u(x),v(x))f(x) = (u(x), v(x)). Then ff maps XX into the plane. Since h=Φfh = \Phi \circ f, Theorem 1.7 shows that it is enough to prove the measurability of ff.

If RR is any open rectangle in the plane, with sides parallel to the axes, then RR is the cartesian product of two segments I1I_1 and I2I_2, and

f1(R)=u1(I1)v1(I2),f^{-1}(R) = u^{-1}(I_1) \cap v^{-1}(I_2),

which is measurable, by our assumption on uu and vv. Every open set VV in the plane is a countable union of such rectangles RiR_i, and since

f1(V)=f1(i=1Ri)=i=1f1(Ri),f^{-1}(V) = f^{-1}\left(\bigcup_{i=1}^{\infty} R_i\right) = \bigcup_{i=1}^{\infty} f^{-1}(R_i),

f1(V)f^{-1}(V) is measurable. ////

1.9 Let XX be a measurable space. The following propositions are corollaries of Theorems 1.7 and 1.8:

(a) If f=u+ivf = u + iv, where uu and vv are real measurable functions on XX, then ff is a complex measurable function on XX.

This follows from Theorem 1.8, with Φ(z)=z\Phi(z) = z.

(b) If f=u+ivf = u + iv is a complex measurable function on XX, then uu, vv, and f|f| are real measurable functions on XX.

This follows from Theorem 1.7, with g(z)=Re(z)g(z) = \text{Re}(z), Im(z)\text{Im}(z), and z|z|.

(c) If ff and gg are complex measurable functions on XX, then so are f+gf + g and fgfg.

For real ff and gg this follows from Theorem 1.8, with

Φ(s,t)=s+t\Phi(s, t) = s + t

and Φ(s,t)=st\Phi(s, t) = st. The complex case then follows from (a) and (b).

(d) If EE is a measurable set in XX and if

χE(x)={1if xE0if xE\chi_E(x) = \begin{cases} 1 & \text{if } x \in E \\ 0 & \text{if } x \notin E \end{cases}

then χE\chi_E is a measurable function.

This is obvious. We call χE\chi_E the characteristic function of the set EE. The letter χ\chi will be reserved for characteristic functions throughout this book.

(e) If ff is a complex measurable function on XX, there is a complex measurable function α\alpha on XX such that α=1|\alpha| = 1 and f=αff = \alpha |f|.

PROOF Let E={x:f(x)=0}E = \{x: f(x) = 0\}, let YY be the complex plane with the origin removed, define φ(z)=z/z\varphi(z) = z/|z| for zYz \in Y, and put

α(x)=φ(f(x)+χE(x))(xX).\alpha(x) = \varphi(f(x) + \chi_E(x)) \quad (x \in X).

If xEx \in E, α(x)=1\alpha(x) = 1; if xEx \notin E, α(x)=f(x)/f(x)\alpha(x) = f(x)/|f(x)|. Since φ\varphi is continuous on YY and since EE is measurable (why?), the measurability of α\alpha follows from (c), (d), and Theorem 1.7. ////

We now show that σ\sigma-algebras exist in great profusion.

1.10 Theorem If F\mathcal{F} is any collection of subsets of XX, there exists a smallest σ\sigma-algebra M\mathcal{M}^* in XX such that FM\mathcal{F} \subset \mathcal{M}^*.

This M\mathcal{M}^* is sometimes called the σ\sigma-algebra generated by F\mathcal{F}.

PROOF Let Ω\Omega be the family of all σ\sigma-algebras M\mathcal{M} in XX which contain F\mathcal{F}. Since the collection of all subsets of XX is such a σ\sigma-algebra, Ω\Omega is not empty. Let M\mathcal{M}^* be the intersection of all MΩ\mathcal{M} \in \Omega. It is clear that FM\mathcal{F} \subset \mathcal{M}^* and that M\mathcal{M}^* lies in every σ\sigma-algebra in XX which contains F\mathcal{F}. To complete the proof, we have to show that M\mathcal{M}^* is itself a σ\sigma-algebra.

If AnMA_n \in \mathcal{M}^* for n=1,2,3,n = 1, 2, 3, \dots, and if MΩ\mathcal{M} \in \Omega, then AnMA_n \in \mathcal{M}, so AnM\bigcup A_n \in \mathcal{M}, since M\mathcal{M} is a σ\sigma-algebra. Since AnM\bigcup A_n \in \mathcal{M} for every MΩ\mathcal{M} \in \Omega, we conclude that AnM\bigcup A_n \in \mathcal{M}^*. The other two defining properties of a σ\sigma-algebra are verified in the same manner. ////

1.11 Borel Sets Let XX be a topological space. By Theorem 1.10, there exists a smallest σ\sigma-algebra B\mathcal{B} in XX such that every open set in XX belongs to B\mathcal{B}. The members of B\mathcal{B} are called the Borel sets of XX.

In particular, closed sets are Borel sets (being, by definition, the complements of open sets), and so are all countable unions of closed sets and all countable intersections of open sets. These last two are called FσF_\sigma’s and GδG_\delta’s, respectively, and play a considerable role. The notation is due to Hausdorff. The letters FF and GG were used for closed and open sets, respectively, and σ\sigma refers to union (Summe), δ\delta to intersection (Durchschnitt). For example, every half-open interval [a,b)[a, b) is a GδG_\delta and an FσF_\sigma in R1\mathbb{R}^1.

Since B\mathcal{B} is a σ\sigma-algebra, we may now regard XX as a measurable space, with the Borel sets playing the role of the measurable sets; more concisely, we consider the measurable space (X,B)(X, \mathcal{B}). If f:XYf: X \to Y is a continuous mapping of XX, where YY is any topological space, then it is evident from the definitions that f1(V)Bf^{-1}(V) \in \mathcal{B} for every open set VV in YY. In other words, every continuous mapping of XX is Borel measurable.

Borel measurable mappings are often called Borel mappings, or Borel functions.

1.12 Theorem Suppose M\mathcal{M} is a σ\sigma-algebra in XX, and YY is a topological space. Let ff map XX into YY.

(a) If Ω\Omega is the collection of all sets EYE \subset Y such that f1(E)Mf^{-1}(E) \in \mathcal{M}, then Ω\Omega is a σ\sigma-algebra in YY.

(b) If ff is measurable and EE is a Borel set in YY, then f1(E)Mf^{-1}(E) \in \mathcal{M}.

(c) If Y=[,]Y = [-\infty, \infty] and f1([α,])Mf^{-1}([\alpha, \infty]) \in \mathcal{M} for every real α\alpha, then ff is measurable.

(d) If ff is measurable, if ZZ is a topological space, if g:YZg: Y \to Z is a Borel mapping, and if h=gfh = g \circ f, then h:XZh: X \to Z is measurable.

Part (c) is a frequently used criterion for the measurability of real-valued functions. (See also Exercise 3.) Note that (d) generalizes Theorem 1.7(b).

PROOF (a) follows from the relations

f1(Y)=X,f^{-1}(Y) = X,f1(YA)=Xf1(A),f^{-1}(Y - A) = X - f^{-1}(A),

and f1(A1A2)=f1(A1)f1(A2)f^{-1}(A_1 \cup A_2 \cup \dots) = f^{-1}(A_1) \cup f^{-1}(A_2) \cup \dots .

To prove (b), let Ω\Omega be as in (a); the measurability of ff implies that Ω\Omega contains all open sets in YY, and since Ω\Omega is a σ\sigma-algebra, Ω\Omega contains all Borel sets in YY.

To prove (c), let Ω\Omega be the collection of all E[,]E \subset [-\infty, \infty] such that f1(E)Mf^{-1}(E) \in \mathcal{M}. Choose a real number α\alpha, and choose αn<α\alpha_n < \alpha so that αnα\alpha_n \to \alpha as nn \to \infty. Since (αn,]Ω(\alpha_n, \infty] \in \Omega for each nn, since

[,α)=n=1[,αn]=n=1(αn,]c,[-\infty, \alpha) = \bigcup_{n=1}^{\infty} [-\infty, \alpha_n] = \bigcup_{n=1}^{\infty} (\alpha_n, \infty]^c,

and since (a) shows that Ω\Omega is a σ\sigma-algebra, we see that [,α)Ω[-\infty, \alpha) \in \Omega. The same is then true of

(α,β)=[,β)(α,].(\alpha, \beta) = [-\infty, \beta) \cap (\alpha, \infty].

Since every open set in [,][-\infty, \infty] is a countable union of segments of the above types, Ω\Omega contains every open set. Thus ff is measurable.

To prove (d), let VZV \subset Z be open. Then g1(V)g^{-1}(V) is a Borel set of YY, and since

h1(V)=f1(g1(V)),h^{-1}(V) = f^{-1}(g^{-1}(V)),

(b) shows that h1(V)Mh^{-1}(V) \in \mathcal{M}.

////

关于d的说明

在定理 1.12 (d) 中,函数 h=gfh = g \circ f 要是可测的,要求 f:XYf: X \to Y可测的(measurable),而 g:YZg: Y \to Z 必须是 Borel 映射(Borel mapping),即 ggBorel 可测的

为什么要限制 gg 为 Borel 映射,而不是一般的可测映射?

这是因为 gg 的定义域 YY 是一个拓扑空间,而 ff 的值域 YYXX 上是可测空间的像。具体来说:

  1. 可测函数的定义 (Definition 1.3(c)) 依赖于 YY 的开集: f:XYf: X \to Y 是可测的,意味着对于 YY每个开集 VV,其原像 f1(V)f^{-1}(V) 必须是 XX 中的可测集(即 f1(V)Mf^{-1}(V) \in M)。

  2. 复合函数的可测性依赖于 gg 的原像: 要证明 h=gfh = g \circ f 可测,我们需要证明对于 ZZ每个开集 VV,其原像 h1(V)h^{-1}(V) 必须是 XX 中的可测集。 根据复合函数的性质:

    h1(V)=(gf)1(V)=f1(g1(V))h^{-1}(V) = (g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))
  3. gg 的要求:

    • 因为 ff 只能保证将 YY开集的原像拉回到 XX 中的可测集
    • 为了确保 h1(V)=f1(g1(V))h^{-1}(V) = f^{-1}(\mathbf{g^{-1}(V)})XX 中的可测集,我们必须保证 g1(V)g^{-1}(V)YY 中的一个Borel 集
    • Borel 映射的定义 (Section 1.11, 1.12(b)): g:YZg: Y \to Z 是 Borel 映射(或 Borel 可测),当且仅当对于 ZZ每个开集 VV,其原像 g1(V)g^{-1}(V) 必须是 YY 中的 Borel 集

结论:

  • 如果 gg 只是一个一般可测映射(即 g1(V)g^{-1}(V) 只是 YY 中的一般可测集),那么 f1(g1(V))f^{-1}(g^{-1}(V)) 不一定在 XX 上是可测的。因为 ff 的可测性只对 YY 中的开集(及其生成的 Borel 集)的原像有保证。
  • Borel 映射确保了 g1(V)g^{-1}(V)(对于 ZZ 中的开集 VV)是 YY 中由开集生成的 σ\sigma-代数中的一个集合(即 Borel 集)。根据定理 1.12(b),可测函数 ff 能够将 YY 中的 Borel 集的原像拉回到 XX 中的可测集,从而证明 hh 是可测的。

因此,gg 限制为 Borel 映射是确保 g1(V)g^{-1}(V)YY 的 Borel 集所必需的,这样才能利用 ff 的可测性(特别是定理 1.12(b))来完成证明。

非常经典的反例来展示,如果不要求 gg 是 Borel 映射(或者说,如果 ff 仅仅是 Lebesgue 可测,而 gg 也是 Lebesgue 可测,但不满足更强的条件),复合函数 gfg \circ f 可能就不是可测的。

这个反例通常涉及到 R\mathbb{R} 上的 Lebesgue 可测集 L\mathcal{L}Borel 可测集 B\mathcal{B} 之间的区别。

经典反例构造 (使用不可测集)

R\mathbb{R} 上,我们考虑 Lebesgue 测度 μ\mu,对应的 σ\sigma-代数是 L\mathcal{L}(Lebesgue 可测集)。我们知道 Borel σ\sigma-代数 B\mathcal{B} 是严格包含于 L\mathcal{L} 的 (BL\mathcal{B} \subsetneq \mathcal{L})。

我们选取一个非 Lebesgue 可测集 ERE \subset \mathbb{R} (例如著名的 Vitali 集)。

现在我们来构造函数 ffgg

  1. 构造 f:RRf: \mathbb{R} \to \mathbb{R} (可测函数): 我们希望 ff 是一个(在 (R,L)(\mathbb{R}, \mathcal{L}) 上)可测的函数,并且它的值域能够帮助我们“隔离”出 EE

    选择一个连续的、严格递增的函数 Ψ:RR\Psi: \mathbb{R} \to \mathbb{R},它的逆函数 Ψ1\Psi^{-1} 也是连续的(因此是 Borel 映射,进而也是 Lebesgue 可测的)。

    • 例: 可以利用 Cantor 函数 ϕ\phi 构造 Ψ(x)=x+ϕ(x)\Psi(x) = x + \phi(x)Ψ\Psi 是连续严格递增的,将 [0,1][0, 1] 映射到 [0,2][0, 2]。我们可以将 Ψ\Psi 推广到整个 R\mathbb{R} 上,使其逆函数 Ψ1\Psi^{-1} 仍然是连续的。

    A=Ψ(E)A = \Psi(E)。由于 Ψ1\Psi^{-1} 是连续函数(因此是 Borel 映射),我们有:

    (Ψ1)1(E)=Ψ(E)=A(\Psi^{-1})^{-1}(E) = \Psi(E) = A

    我们知道 AA 几乎处处为零(因为它在 [0,2][0, 2] 内,且 μ(A)=1\mu(A)=1 的情况会导致 EE 可测,因此 μ(A)\mu(A) 必须是 11μ(A)=0\mu(A) = 0μ(A)>0\mu^*(A)>0)。关键的一点是: Ψ\Psi 的构造保证了存在一个 Lebesgue 可测集 ARA \subset \mathbb{R},其原像 Ψ1(A)\Psi^{-1}(A)非 Lebesgue 可测集 EE

    我们定义 f=Ψ1f = \Psi^{-1}

    • ff 的性质: ff连续函数,因此 ffBorel 映射 (即 f1(Borel Set)=Borel Setf^{-1}(\text{Borel Set}) = \text{Borel Set}),进而也是 Lebesgue 可测函数(因为 BL\mathcal{B} \subset \mathcal{L})。
  2. 构造 g:RRg: \mathbb{R} \to \mathbb{R} (可测函数): 我们定义 gg 为集 AA示性函数 (characteristic function):

    g(x)=χA(x)={1if xA0if xAg(x) = \chi_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}
    • gg 的性质: AA 是一个 Lebesgue 可测集 (L\mathcal{L} 中的元素)。示性函数 gg 是可测的,当且仅当它的定义集 AA 是可测的。所以 ggLebesgue 可测函数 (在 (R,L)(\mathbb{R}, \mathcal{L}) 上)。
  3. 计算复合函数 h=gfh = g \circ f:

    h(x)=(gf)(x)=g(f(x))=χA(f(x))h(x) = (g \circ f)(x) = g(f(x)) = \chi_A(f(x))

    我们检查 hh 的可测性。对于开集 V=(1/2,3/2)RV = (1/2, 3/2) \subset \mathbb{R},我们有:

    h1(V)={xR:h(x)(1/2,3/2)}={xR:χA(f(x))=1}={xR:f(x)A}=f1(A)=Ψ(A)=E\begin{align*} h^{-1}(V) &= \{x \in \mathbb{R} : h(x) \in (1/2, 3/2)\} \\ &= \{x \in \mathbb{R} : \chi_A(f(x)) = 1\} \\ &= \{x \in \mathbb{R} : f(x) \in A\} \\ &= f^{-1}(A) \\ &= \Psi(A) \\ &= E \end{align*}

    因为 h1(V)=Eh^{-1}(V) = E 是一个非 Lebesgue 可测集,所以复合函数 h=gfh = g \circ f 不是 Lebesgue 可测的

总结

在这个反例中:

  • ffBorel 可测 (甚至连续) 的,因此是 Lebesgue 可测的。
  • ggLebesgue 可测的,因为 AA 是 Lebesgue 可测集。
  • 但是 gg 不是 Borel 映射,因为 AAL\mathcal{L} 中的一个集合,但不是 B\mathcal{B} 中的 Borel 集。

这完美地说明了,Rudin (定理 1.12(d)) 中要求 gg 必须是 Borel 映射 的重要性。如果 gg 只是一个一般可测映射(指 (R,L)(R,B)(\mathbb{R}, \mathcal{L}) \to (\mathbb{R}, \mathcal{B}) 可测),它可能将 Borel 集的原像拉回到一个非 Borel 可测集 AAff 是 Borel 映射时,它能保证 f1(A)f^{-1}(A) 仍然可测,但在这个反例中,我们选择了一个能将 AA 的原像 EE 拉回到非可测集ff 的逆,从而导致了复合函数不可测。

总之,复合函数的可测性需要 gg 具有“足够好”的性质来保证 g1(V)g^{-1}(V)ff 可以处理的集合(即 YY 中的 Borel 集)

  • 如果 ggBorel 映射,则 g1(V)g^{-1}(V)YY 中的 Borel 集,而 ff 作为可测函数可以将 Borel 集的原像 f1(g1(V))f^{-1}(g^{-1}(V)) 拉回 XX 中的可测集。
  • 如果 gg 只是一般可测,那么 g1(V)g^{-1}(V) 可能是 YY 中的非 Borel 可测集 AA,而 ff 并不保证 f1(A)f^{-1}(A) 仍然是可测的。

1.13 Definition Let {an}\{a_n\} be a sequence in [,][-\infty, \infty], and put

bk=sup{ak,ak+1,ak+2,}(k=1,2,3,)(1)b_k = \sup \{a_k, a_{k+1}, a_{k+2}, \dots\} \quad (k = 1, 2, 3, \dots) \quad (1)

and

β=inf{b1,b2,b3,}.(2)\beta = \inf \{b_1, b_2, b_3, \dots\}. \quad (2)

We call β\beta the upper limit of {an}\{a_n\}, and write

β=lim supan.(3)\beta = \limsup a_n. \quad (3)

The following properties are easily verified: First, b1b2b3b_1 \ge b_2 \ge b_3 \ge \dots, so that bkβb_k \to \beta as kk \to \infty; secondly, there is a subsequence {ani}\{a_{n_i}\} of {an}\{a_n\} such that aniβa_{n_i} \to \beta as ii \to \infty, and β\beta is the largest number with this property.

The lower limit is defined analogously: simply interchange sup and inf in (1) and (2). Note that

lim infan=lim sup(an).(4)\liminf a_n = -\limsup (-a_n). \quad (4)

If {an}\{a_n\} converges, then evidently

lim supan=lim infan=liman.(5)\limsup a_n = \liminf a_n = \lim a_n. \quad (5)

Suppose {fn}\{f_n\} is a sequence of extended-real functions on a set XX. Then supnfn\sup_n f_n and lim supnfn\limsup_n f_n are the functions defined on XX by

(supnfn)(x)=supn(fn(x)),(6)(\sup_n f_n)(x) = \sup_n (f_n(x)), \quad (6)(lim supnfn)(x)=limnsupn(fn(x)).(7)(\limsup_n f_n)(x) = \lim_{n \to \infty} \sup_n (f_n(x)). \quad (7)

If

f(x)=limnfn(x),(8)f(x) = \lim_{n \to \infty} f_n(x), \quad (8)

the limit being assumed to exist at every xXx \in X, then we call ff the pointwise limit of the sequence {fn}\{f_n\}.

1.14 Theorem If fn:X[,]f_n: X \to [-\infty, \infty] is measurable, for n=1,2,3,n = 1, 2, 3, \dots, and

g=supn1fn,h=lim supnfn,g = \sup_{n \ge 1} f_n, \quad h = \limsup_{n \to \infty} f_n,

then gg and hh are measurable.

PROOF g1((α,])=n=1fn1((α,])g^{-1}((\alpha, \infty]) = \bigcup_{n=1}^{\infty} f_n^{-1}((\alpha, \infty]). Hence Theorem 1.12(c) implies that gg is measurable. The same result holds of course with inf in place of sup, and since

h=infk1{supikfi},h = \inf_{k \ge 1} \left\{ \sup_{i \ge k} f_i \right\},

it follows that hh is measurable. ////

Corollaries

(a) The limit of every pointwise convergent sequence of complex measurable functions is measurable.

(b) If ff and gg are measurable (with range in [,][-\infty, \infty] ), then so are max{f,g}\max\{f, g\} and min{f,g}\min\{f, g\} . In particular, this is true of the functions

f+=max{f,0}andf=min{f,0}.f^+ = \max\{f, 0\} \quad \text{and} \quad f^- = -\min\{f, 0\}.

1.15 Proposition The above functions f+f^+ and ff^- are called the positive and negative parts of ff . We have f=f++f|f| = f^+ + f^- and f=f+ff = f^+ - f^- , a standard representation of ff as a difference of two nonnegative functions, with a certain minimality property: If f=ghf = g - h , g0g \ge 0 , and h0h \ge 0 , then f+gf^+ \le g and fhf^- \le h .

PROOF fgf \le g and 0g0 \le g clearly implies max{f,0}g\max\{f, 0\} \le g . ////