Integration of Positive Functions

In this section, M\mathcal{M} will be a σ\sigma -algebra in a set XX and μ\mu will be a positive measure on M\mathcal{M} .

1.23 Definition If s:X[0,)s: X \to [0, \infty) is a measurable simple function, of the form

s=i=1nαiχAi,(1)s = \sum_{i=1}^{n} \alpha_i \chi_{A_i}, \quad (1)

where α1,,αn\alpha_1, \dots, \alpha_n are the distinct values of ss (compare Definition 1.16), and if EME \in \mathcal{M} , we define

Esdμ=i=1nαiμ(AiE).(2)\int_E s \, d\mu = \sum_{i=1}^{n} \alpha_i \mu(A_i \cap E). \quad (2)

The convention 0=00 \cdot \infty = 0 is used here; it may happen that αi=0\alpha_i = 0 for some ii and that μ(AiE)=\mu(A_i \cap E) = \infty .

If f:X[0,]f: X \to [0, \infty] is measurable, and EME \in \mathcal{M} , we define

Efdμ=supEsdμ,(3)\int_E f \, d\mu = \sup \int_E s \, d\mu, \quad (3)

the supremum being taken over all simple measurable functions ss such that 0sf0 \le s \le f .

The left member of (3) is called the Lebesgue integral of ff over EE , with respect to the measure μ\mu . It is a number in [0,][0, \infty] .

Observe that we apparently have two definitions for Efdμ\int_E f \, d\mu if ff is simple, namely, (2) and (3). However, these assign the same value to the integral, since ff is, in this case, the largest of the functions ss which occur on the right of (3).

1.24 The following propositions are immediate consequences of the definitions. The functions and sets occurring in them are assumed to be measurable:

(a) If 0fg0 \le f \le g , then EfdμEgdμ\int_E f \, d\mu \le \int_E g \, d\mu . (b) If ABA \subset B and f0f \ge 0 , then AfdμBfdμ\int_A f \, d\mu \le \int_B f \, d\mu .

(c) If f0f \ge 0 and cc is a constant, 0c<0 \le c < \infty , then

Ecfdμ=cEfdμ.\int_E cf \, d\mu = c \int_E f \, d\mu.

(d) If f(x)=0f(x) = 0 for all xEx \in E , then Efdμ=0\int_E f \, d\mu = 0 , even if μ(E)=\mu(E) = \infty .

(e) If μ(E)=0\mu(E) = 0 , then Efdμ=0\int_E f \, d\mu = 0 , even if f(x)=f(x) = \infty for every xEx \in E .

(f) If f0f \ge 0 , then Efdμ=XχEfdμ\int_E f \, d\mu = \int_X \chi_E f \, d\mu .

This last result shows that we could have restricted our definition of integration to integrals over all of XX , without losing any generality. If we wanted to integrate over subsets, we could then use (f) as the definition. It is purely a matter of taste which definition is preferred.

One may also remark here that every measurable subset EE of a measure space XX is again a measure space, in a perfectly natural way: The new measurable sets are simply those measurable subsets of XX which lie in EE , and the measure is unchanged, except that its domain is restricted. This shows again that as soon as we have integration defined over every measure space, we automatically have it defined over every measurable subset of every measure space.

1.25 Proposition Let ss and tt be nonnegative measurable simple functions on XX . For EME \in \mathcal{M} , define

φ(E)=Esdμ.(1)\varphi(E) = \int_E s \, d\mu. \quad (1)

Then φ\varphi is a measure on M\mathcal{M} . Also

X(s+t)dμ=Xsdμ+Xtdμ.(2)\int_X (s + t) \, d\mu = \int_X s \, d\mu + \int_X t \, d\mu. \quad (2)

(This proposition contains provisional forms of Theorems 1.27 and 1.29.)

PROOF If ss is as in Definition 1.23, and if E1,E2,E_1, E_2, \dots are disjoint members of M\mathcal{M} whose union is EE , the countable additivity of μ\mu shows that

φ(E)=i=1nαiμ(AiE)=i=1nαir=1μ(AiEr)=r=1i=1nαiμ(AiEr)=r=1φ(Er).\begin{aligned}\varphi(E) &= \sum_{i=1}^{n} \alpha_i \mu(A_i \cap E) = \sum_{i=1}^{n} \alpha_i \sum_{r=1}^{\infty} \mu(A_i \cap E_r) \\ &= \sum_{r=1}^{\infty} \sum_{i=1}^{n} \alpha_i \mu(A_i \cap E_r) = \sum_{r=1}^{\infty} \varphi(E_r).\end{aligned}

Also, φ()=0\varphi(\emptyset) = 0 , so that φ\varphi is not identically \infty .

Next, let ss be as before, let β1,,βm\beta_1, \dots, \beta_m be the distinct values of tt , and let Bj={x:t(x)=βj}B_j = \{x: t(x) = \beta_j\} . If Eij=AiBjE_{ij} = A_i \cap B_j , then

Eij(s+t)dμ=(αi+βj)μ(Eij)\int_{E_{ij}} (s + t) d\mu = (\alpha_i + \beta_j)\mu(E_{ij})

and

Eijsdμ+Eijtdμ=αiμ(Eij)+βjμ(Eij).\int_{E_{ij}} s d\mu + \int_{E_{ij}} t d\mu = \alpha_i \mu(E_{ij}) + \beta_j \mu(E_{ij}).

Thus (2) holds with EijE_{ij} in place of XX . Since XX is the disjoint union of the sets EijE_{ij} ( 1in1 \le i \le n , 1jm1 \le j \le m ), the first half of our proposition implies that (2) holds. ////

We now come to the interesting part of the theory. One of its most remarkable features is the ease with which it handles limit operations.

1.26 Lebesgue’s Monotone Convergence Theorem Let {fn}\{f_n\} be a sequence of measurable functions on XX , and suppose that

(a) 0f1(x)f2(x)0 \le f_1(x) \le f_2(x) \le \dots \le \infty for every xXx \in X , (b) fn(x)f(x)f_n(x) \to f(x) as nn \to \infty , for every xXx \in X .

Then ff is measurable, and

XfndμXfdμas n.\int_X f_n d\mu \to \int_X f d\mu \quad \text{as } n \to \infty.

PROOF Since fnfn+1\int f_n \le \int f_{n+1} , there exists an α[0,]\alpha \in [0, \infty] such that

Xfndμαas n.(1)\int_X f_n d\mu \to \alpha \quad \text{as } n \to \infty. \quad (1)

By Theorem 1.14, ff is measurable. Since fnff_n \le f , we have fnf\int f_n \le \int f for every nn , so (1) implies

αXfdμ.(2)\alpha \le \int_X f d\mu. \quad (2)

Let ss be any simple measurable function such that 0sf0 \le s \le f , let cc be a constant, 0<c<10 < c < 1 , and define

En={x:fn(x)cs(x)}(n=1,2,3,).(3)E_n = \{x: f_n(x) \ge cs(x)\} \quad (n = 1, 2, 3, \dots). \quad (3)

Each EnE_n is measurable, E1E2E3E_1 \subset E_2 \subset E_3 \subset \dots , and X=EnX = \bigcup E_n . To see this equality, consider some xXx \in X . If f(x)=0f(x) = 0 , then xE1x \in E_1 ; if f(x)>0f(x) > 0 , then cs(x)<f(x)cs(x) < f(x) , since c<1c < 1 ; hence xEnx \in E_n for some nn . Also

XfndμEnfndμcEnsdμ(n=1,2,3,).(4)\int_X f_n d\mu \ge \int_{E_n} f_n d\mu \ge c \int_{E_n} s d\mu \quad (n = 1, 2, 3, \dots). \quad (4)

Let nn \to \infty , applying Proposition 1.25 and Theorem 1.19(d) to the last integral in (4). The result is

αcXsdμ.(5)\alpha \ge c \int_X s \, d\mu. \quad (5)

Since (5) holds for every c<1c < 1 , we have

αXsdμ(6)\alpha \ge \int_X s \, d\mu \quad (6)

for every simple measurable ss satisfying 0sf0 \le s \le f , so that

αXfdμ.(7)\alpha \ge \int_X f \, d\mu. \quad (7)

The theorem follows from (1), (2), and (7).

1.26 证明过程解释

这个定理(勒贝格单调收敛定理)是测度理论的基石之一。它的核心思想是:对于一个非负、单调递增的函数序列,其积分的极限等于其极限函数的积分。

以下是定理1.26证明过程的分解:

证明目标: 已知 0f1f20 \le f_1 \le f_2 \le \dotsfnff_n \to f(逐点收敛)。 需要证明 limnXfndμ=Xfdμ\lim_{n \to \infty} \int_X f_n d\mu = \int_X f d\mu


证明步骤详解:

第 1 步:定义 α\alpha,并证明 αfdμ\alpha \le \int f d\mu

  1. 定义 α\alpha 正如您之前问到的,由于 fnfn+1f_n \le f_{n+1},所以 fnfn+1\int f_n \le \int f_{n+1}。这是一个单调非递减的实数序列。根据实数的完备性,这个序列必定收敛到一个极限,我们称这个极限为 α\alpha。 所以,α=limnXfndμ\alpha = \lim_{n \to \infty} \int_X f_n d\mu。(这就是式 (1))

  2. 证明 αfdμ\alpha \le \int f d\mu

    • 因为 fn(x)f(x)f_n(x) \to f(x),所以 ff 是可测的(根据定理1.14)。
    • 又因为序列是递增的,对所有的 nn 都有 fnff_n \le f
    • 根据积分的保序性(1.24a),我们有 fnf\int f_n \le \int f
    • nn \to \infty,这个不等式对极限也成立。
    • 因此,αXfdμ\alpha \le \int_X f d\mu。(这就是式 (2))

第 2 步:证明 αfdμ\alpha \ge \int f d\mu(这是证明的核心)

这一步的策略是证明 α\alpha 大于等于“任何在 ff 下方的简单函数 ss 的积分”。

  1. 引入 sscc

    • 根据非负函数积分的定义(1.23),fdμ\int f d\mu 是所有满足 0sf0 \le s \le f 的简单可测函数 ss 的积分 sdμ\int s d\mu上确界 (sup)
    • 为了证明 αfdμ\alpha \ge \int f d\mu,我们只需要证明 α\alpha 是所有 sdμ\int s d\mu 的一个上界
    • 所以,我们任取一个满足 0sf0 \le s \le f 的简单函数 ss
    • 我们再引入一个“折扣”常数 cc,使得 0<c<10 < c < 1
  2. 构造一个集合序列 EnE_n

    • 定义 En={xX:fn(x)cs(x)}E_n = \{ x \in X : f_n(x) \ge c \cdot s(x) \}。(这就是式 (3))
    • 这个集合 EnE_n 是所有 fnf_n “足够大”(至少达到 sscc 倍)的点的集合。
  3. 分析 EnE_n 的性质:

    • EnE_n 是递增的: 因为 fnfn+1f_n \le f_{n+1},所以 EnEn+1E_n \subset E_{n+1}
    • EnE_n 的并集是 XX 为什么?
      • 任取一个 xXx \in X
      • 如果 f(x)=0f(x)=0,那么 s(x)=0s(x)=0,因此 fn(x)cs(x)f_n(x) \ge c \cdot s(x) (即 000 \ge 0) 始终成立,所以 xE1x \in E_1
      • 如果 f(x)>0f(x)>0,因为 s(x)f(x)s(x) \le f(x)c<1c < 1,我们有 cs(x)cf(x)<f(x)c \cdot s(x) \le c \cdot f(x) < f(x)。由于 fn(x)f_n(x) 递增并收敛到 f(x)f(x),所以 fn(x)f_n(x) 最终一定会超过 cs(x)c \cdot s(x) 这个值。也就是说,存在某个 nn 使得 xEnx \in E_n
      • 因此,n=1En=X\bigcup_{n=1}^\infty E_n = X
  4. 建立积分不等式:

    • 我们从 fn\int f_n 开始,并利用 EnE_nXfndμEnfndμ\int_X f_n d\mu \ge \int_{E_n} f_n d\mu (因为 fn0f_n \ge 0
    • EnE_n 上,根据 EnE_n 的定义,我们有 fn(x)cs(x)f_n(x) \ge c \cdot s(x)EnfndμEncsdμ=cEnsdμ\int_{E_n} f_n d\mu \ge \int_{E_n} c \cdot s d\mu = c \int_{E_n} s d\mu
    • 把它们合起来,得到: XfndμcEnsdμ\int_X f_n d\mu \ge c \int_{E_n} s d\mu。(这就是式 (4))
  5. 两边取极限 (nn \to \infty):

    • 左边: limnXfndμ=α\lim_{n \to \infty} \int_X f_n d\mu = \alpha (根据我们的定义)。
    • 右边: 我们需要求 limncEnsdμ\lim_{n \to \infty} c \int_{E_n} s d\mu
    • 根据命题1.25,ϕ(E)=Esdμ\phi(E) = \int_E s d\mu 是一个测度。
    • 由于 EnE_n 是一个递增的集合序列且 En=X\bigcup E_n = X,根据测度的连续性(定理1.19d),我们有: limnϕ(En)=ϕ(En)=ϕ(X)\lim_{n \to \infty} \phi(E_n) = \phi(\bigcup E_n) = \phi(X)
    • limnEnsdμ=Xsdμ\lim_{n \to \infty} \int_{E_n} s d\mu = \int_X s d\mu
    • 因此,对式 (4) 两边取极限得到: αcXsdμ\alpha \ge c \int_X s d\mu。(这就是式 (5))
  6. 去掉 cc

    • 这个不等式 αcXsdμ\alpha \ge c \int_X s d\mu所有 0<c<10 < c < 1 都成立。
    • 我们可以让 cc 任意地接近 1,所以不等式在 c=1c=1 时也必须成立。
    • 因此,αXsdμ\alpha \ge \int_X s d\mu。(这就是式 (6))
  7. 得出结论:

    • 我们证明了:对于 任意 满足 0sf0 \le s \le f 的简单函数 ss,都有 αXsdμ\alpha \ge \int_X s d\mu
    • 这意味着 α\alpha 是所有这些 sdμ\int s d\mu 的一个上界
    • fdμ\int f d\mu 被定义为这些 sdμ\int s d\mu最小上界(上确界)。
    • 所以,α\alpha 必然大于或等于这个最小上界。
    • αXfdμ\alpha \ge \int_X f d\mu。(这就是式 (7))

最终总结:

  • 在第 1 步中,我们证明了 αfdμ\alpha \le \int f d\mu。(式 (2))
  • 在第 2 步中,我们证明了 αfdμ\alpha \ge \int f d\mu。(式 (7))

结合这两个不等式,唯一可能的结论就是: α=Xfdμ\alpha = \int_X f d\mu

即: limnXfndμ=Xfdμ\lim_{n \to \infty} \int_X f_n d\mu = \int_X f d\mu 证明完毕。

1.27 Theorem If fn:X[0,]f_n: X \to [0, \infty] is measurable, for n=1,2,3,n = 1, 2, 3, \dots , and

f(x)=n=1fn(x)(xX),(1)f(x) = \sum_{n=1}^{\infty} f_n(x) \quad (x \in X), \quad (1)

then

Xfdμ=n=1Xfndμ.(2)\int_X f \, d\mu = \sum_{n=1}^{\infty} \int_X f_n \, d\mu. \quad (2)

PROOF First, there are sequences {si}\{s_i'\} , {si}\{s_i''\} of simple measurable functions such that sif1s_i' \to f_1 and sif2s_i'' \to f_2 , as in Theorem 1.17. If si=si+sis_i = s_i' + s_i'' , then sif1+f2s_i \to f_1 + f_2 , and the monotone convergence theorem, combined with Proposition 1.25, shows that

X(f1+f2)dμ=Xf1dμ+Xf2dμ.(3)\int_X (f_1 + f_2) \, d\mu = \int_X f_1 \, d\mu + \int_X f_2 \, d\mu. \quad (3)

Next, put gN=f1++fNg_N = f_1 + \dots + f_N . The sequence {gN}\{g_N\} converges monotonically to ff , and if we apply induction to (3) we see that

XgNdμ=n=1NXfndμ.(4)\int_X g_N \, d\mu = \sum_{n=1}^{N} \int_X f_n \, d\mu. \quad (4)

Applying the monotone convergence theorem once more, we obtain (2), and the proof is complete.

If we let μ\mu be the counting measure on a countable set, Theorem 1.27 is a statement about double series of nonnegative real numbers (which can of course be proved by more elementary means):

Corollary If aij0a_{ij} \ge 0 for ii and j=1,2,3,j = 1, 2, 3, \dots , then

i=1j=1aij=j=1i=1aij.\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij} = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{ij}.

1.28 Fatou’s Lemma If fn:X[0,]f_n: X \to [0, \infty] is measurable, for each positive integer nn , then

X(lim infnfn)dμlim infnXfndμ.(1)\int_X \left( \liminf_{n \to \infty} f_n \right) d\mu \le \liminf_{n \to \infty} \int_X f_n d\mu. \quad (1)

Strict inequality can occur in (1); see Exercise 8.

PROOF Put

gk(x)=infikfi(x)(k=1,2,3,;xX).(2)g_k(x) = \inf_{i \ge k} f_i(x) \quad (k = 1, 2, 3, \dots; x \in X). \quad (2)

Then gkfkg_k \le f_k , so that

XgkdμXfkdμ(k=1,2,3,).(3)\int_X g_k d\mu \le \int_X f_k d\mu \quad (k = 1, 2, 3, \dots). \quad (3)

Also, 0g1g20 \le g_1 \le g_2 \le \dots , each gkg_k is measurable, by Theorem 1.14, and gk(x)lim inffn(x)g_k(x) \to \liminf f_n(x) as kk \to \infty , by Definition 1.13. The monotone convergence theorem shows therefore that the left side of (3) tends to the left side of (1), as kk \to \infty . Hence (1) follows from (3). ////

1.29 Theorem Suppose f:X[0,]f: X \to [0, \infty] is measurable, and

φ(E)=Efdμ(EM).(1)\varphi(E) = \int_E f d\mu \quad (E \in \mathfrak{M}). \quad (1)

Then φ\varphi is a measure on M\mathfrak{M} , and

Xgdφ=Xgfdμ(2)\int_X g d\varphi = \int_X gf d\mu \quad (2)

for every measurable gg on XX with range in [0,][0, \infty] .

PROOF Let E1,E2,E3,E_1, E_2, E_3, \dots be disjoint members of M\mathfrak{M} whose union is EE . Observe that

χEf=j=1χEjf(3)\chi_E f = \sum_{j=1}^{\infty} \chi_{E_j} f \quad (3)

and that

φ(E)=XχEfdμ,φ(Ej)=XχEjfdμ.(4)\varphi(E) = \int_X \chi_E f d\mu, \quad \varphi(E_j) = \int_X \chi_{E_j} f d\mu. \quad (4)

It now follows from Theorem 1.27 that

φ(E)=j=1φ(Ej).(5)\varphi(E) = \sum_{j=1}^{\infty} \varphi(E_j). \quad (5)

Since φ()=0\varphi(\emptyset) = 0 , (5) proves that φ\varphi is a measure.

Next, (1) shows that (2) holds whenever g=χEg = \chi_E for some EME \in \mathcal{M} . Hence (2) holds for every simple measurable function gg , and the general case follows from the monotone convergence theorem. ////

Remark The second assertion of Theorem 1.29 is sometimes written in the form

dφ=fdμ.(6)d\varphi = f d\mu. \quad (6)

We assign no independent meaning to the symbols dφd\varphi and dμd\mu ; (6) merely means that (2) holds for every measurable g0g \ge 0 .

Theorem 1.29 has a very important converse, the Radon-Nikodym theorem, which will be proved in Chap. 6.